Investigation of LCD 3D Printing of Carbon Fiber Composites by Utilising Central Composite Design

Author:

Salih Raveen Mohammed1ORCID,Kadauw Abdulkader12ORCID,Zeidler Henning2ORCID,Aliyev Rezo2ORCID

Affiliation:

1. Mechanical and Mechatronic Engineering Department, College of Engineering, Salahddin University Erbil, Erbil 44001, Iraq

2. Institute for Machine Elements, Engineering Design and Manufacturing, TU Bergakademie Freiberg, 09599 Freiberg, Germany

Abstract

The technology of additive manufacturing (AM) has transformed the fields of machinery, aerospace, and electronics. Adopting cost-effective, precise, and rapid procedures in AM is one of the major concerns of today’s industry. Stereolithography is a promising AM technique that is thought to meet these requirements. However, the fact that materials printed with stereolithography do not have good mechanical properties limits their application, such as in biomedicine and aerospace. Previous studies have shown the shortcomings of stereolithography printers. This research focuses on enhancing the mechanical characteristics of the polymer resin used in stereolithography (SLA)-like liquid crystal display (LCD) 3D printers by fabricating a new AM composite material with carbon fibers. For this reason, chopped carbon fibers (0.1 mm size) at amounts of 0.25 wt% and 0.5 wt% have been used with Acrylonitrile butadiene styrene (ABS)-like photopolymer transparent resin during the printing process, and three different print layer thicknesses were tested. For the design of the experiment (DoE), Q-DAS software was used to analyze the resulting data. A tensile-testing machine was utilized to determine the ultimate strength using the ASTM D638 standard. The results show an increase in the ultimate strength by adding carbon fiber to some extent, but after a certain percentage of carbon fiber added, the strength drops off.

Funder

Federal Foreign Office (Auswärtiges Amt) of Germany

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3