Wheat Ear Recognition Based on RetinaNet and Transfer Learning

Author:

Li Jingbo,Li Changchun,Fei ShuaipengORCID,Ma Chunyan,Chen Weinan,Ding Fan,Wang Yilin,Li Yacong,Shi Jinjin,Xiao Zhen

Abstract

The number of wheat ears is an essential indicator for wheat production and yield estimation, but accurately obtaining wheat ears requires expensive manual cost and labor time. Meanwhile, the characteristics of wheat ears provide less information, and the color is consistent with the background, which can be challenging to obtain the number of wheat ears required. In this paper, the performance of Faster regions with convolutional neural networks (Faster R-CNN) and RetinaNet to predict the number of wheat ears for wheat at different growth stages under different conditions is investigated. The results show that using the Global WHEAT dataset for recognition, the RetinaNet method, and the Faster R-CNN method achieve an average accuracy of 0.82 and 0.72, with the RetinaNet method obtaining the highest recognition accuracy. Secondly, using the collected image data for recognition, the R2 of RetinaNet and Faster R-CNN after transfer learning is 0.9722 and 0.8702, respectively, indicating that the recognition accuracy of the RetinaNet method is higher on different data sets. We also tested wheat ears at both the filling and maturity stages; our proposed method has proven to be very robust (the R2 is above 90). This study provides technical support and a reference for automatic wheat ear recognition and yield estimation.

Funder

the Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3