Power and Radio Resource Management in Femtocell Networks for Interference Mitigation

Author:

Alotaibi SultanORCID,Sinky HassanORCID

Abstract

The growth of mobile traffic volume has been exploded because of the rapid improvement of mobile devices and their applications. Heterogeneous networks (HetNets) can be an attractive solution in order to adopt the exponential growth of wireless data. Femtocell networks are accommodated within the concept of HetNets. The implementation of femtocell networks has been considered as an innovative approach that can improve the network’s capacity. However, dense implementation and installation of femtocells would introduce interference, which reduces the network’s performance. Interference occurs when two adjacent femtocells are operated with the same radio resources. In this work, a scheme, which comprises two stages, is proposed. The first step is to distribute radio resources among femtocells, where each femtocell can identify the source of the interference. A constructed table is generated in order to measure the level of interference for each femtocell. Accordingly, the level of interference for each sub-channel can be recognized by all femtocells. The second stage includes a mechanism that helps femtocell base stations adjust their transmission power autonomously to alleviate the interference. It enforces a cost function, which should be realized by each femtocell. The cost function is calculated based on the production of undesirable interference impact, which is introduced by each femtocell. Hence, the transmission power is adjusted autonomously, where undesirable interference can be monitored and alleviated. The proposed scheme is evaluated through a MATLAB simulation and compared with other approaches. The simulation results show an improvement in the network’s capacity. Furthermore, the unfavorable impact of the interference can be managed and alleviated.

Funder

The Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3