Acoustic Sensing Based on Online Handwritten Signature Verification

Author:

Chen MengqiORCID,Lin Jiawei,Zou Yongpan,Wu Kaishun

Abstract

Handwritten signatures are widely used for identity authorization. However, verifying handwritten signatures is cumbersome in practice due to the dependency on extra drawing tools such as a digitizer, and because the false acceptance of a forged signature can cause damage to property. Therefore, exploring a way to balance the security and user experiment of handwritten signatures is critical. In this paper, we propose a handheld signature verification scheme called SilentSign, which leverages acoustic sensors (i.e., microphone and speaker) in mobile devices. Compared to the previous online signature verification system, it provides handy and safe paper-based signature verification services. The prime notion is to utilize the acoustic signals that are bounced back via a pen tip to depict a user’s signing pattern. We designed the signal modulation stratagem carefully to guarantee high performance, developed a distance measurement algorithm based on phase shift, and trained a verification model. In comparison with the traditional signature verification scheme, SilentSign allows users to sign more conveniently as well as invisibly. To evaluate SilentSign in various settings, we conducted comprehensive experiments with 35 participants. Our results reveal that SilentSign can attain 98.2% AUC and 1.25% EER. We note that a shorter conference version of this paper was presented in Percom (2019). Our initial conference paper did not finish the complete experiment. This manuscript has been revised and provided additional experiments to the conference proceedings; for example, by including System Robustness, Computational Overhead, etc.

Funder

China NSFC Grant

Guangdong NSF Grant

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Two-Stage Feature Generator for Handwritten Digit Classification;Sensors;2023-10-15

2. Design and Analysis of Software and Hardware Cooperative Mode;2023 3rd International Conference on Neural Networks, Information and Communication Engineering (NNICE);2023-02-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3