Indirect Voltammetry Detection of Non-Electroactive Neurotransmitters Using Glassy Carbon Microelectrodes: The Case of Glutamate

Author:

Galindo Sandra12,Nimbalkar Surabhi12ORCID,Oyawale Alexis12,Bunnell James12,Cuacuas Omar12,Montgomery-Walsh Rhea12,Rohatgi Amish12,Cariappa Brinda12,Gautam Abhivyakti12,Peguero-Garcia Kevin12,Lee Juyeon12,Bisgaard Stephanie3,Faucher Carter12,Keller Stephan3,Kassegne Sam12ORCID

Affiliation:

1. NanoFAB.SDSU Research Lab, Department of Mechanical Engineering, College of Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1323, USA

2. NSF-ERC Center for Neurotechnology (CNT), San Diego, CA 92182, USA

3. National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, Ørsteds Plads, Building 347, 2800 Kongens Lyngby, Denmark

Abstract

Glassy carbon (GC) microelectrodes have been successfully used for the detection of electroactive neurotransmitters such as dopamine and serotonin through voltammetry. However, non-electroactive neurotransmitters such as glutamate, lactate, and gamma-aminobutyric acid (GABA) are inherently unsuitable for detection through voltammetry techniques without functionalizing the surface of the microelectrodes. To this end, we present here the immobilization of the L-glutamate oxidase (GluOx) enzyme on the surface of GC microelectrodes to enable the catalysis of a chemical reaction between L-glutamate, oxygen, and water to produce H2O2, an electroactive byproduct that is readily detectable through voltammetry. This immobilization of GluOx on the surface of bare GC microelectrodes and the subsequent catalytic reduction in H2O2 through fast-scan cyclic voltammetry (FSCV) helped demonstrate the indirect in vitro detection of glutamate, a non-electroactive molecule, at concentrations as low as 10 nM. The functionalized microelectrodes formed part of a four-channel array of microelectrodes (30 μm × 60 μm) on a 1.6 cm long neural probe that was supported on a flexible polymer, with potential for in vivo applications. The types and strengths of the bond between the GC microelectrode surface and its functional groups, on one hand, and glutamate and the immobilized functionalization matrix, on the other hand, were investigated through molecular dynamic (MD) modeling and Fourier transform infrared spectroscopy (FTIR). Both MD modeling and FTIR demonstrated the presence of several covalent bonds in the form of C-O (carbon–oxygen polar covalent bond), C=O (carbonyl), C-H (alkenyl), N-H (hydrogen bond), C-N (carbon–nitrogen single bond), and C≡N (triple carbon–nitrogen bond). Further, penetration tests on an agarose hydrogel model confirmed that the probes are mechanically robust, with their penetrating forces being much lower than the fracture force of the probe material.

Funder

Center for Neurotechnology (CNT), a National Science Foundation Engineering Research Center

NSF AccelNet: Broadening Carbon Ring program

Independent Research Fund Denmark

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3