Affiliation:
1. Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
2. Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
Abstract
Background: Artificial neural networks are statistical methods that mimic complex neural connections, simulating the learning dynamics of the human brain. They play a fundamental role in clinical decision-making, although their success depends on good integration with clinical protocols. When applied to lung cancer research, artificial neural networks do not aim to be biologically realistic, but rather to provide efficient models for nonlinear regression or classification. Methods: We conducted a comprehensive search of EMBASE (via Ovid), MEDLINE (via PubMed), Cochrane CENTRAL, and Google Scholar from April 2018 to December 2022, using a combination of keywords and related terms for “artificial neural network”, “lung cancer”, “non-small cell lung cancer”, “diagnosis”, and “treatment”. Results: Artificial neural networks have shown excellent aptitude in learning the relationships between the input/output mapping from a given dataset, without any prior information or assumptions about the statistical distribution of the data. They can simultaneously process numerous variables, managing complexity; hence, they have found broad application in tasks requiring attention. Conclusions: Lung cancer is the most common and lethal form of tumor, with limited diagnostic and treatment methods. The advances in tailored medicine have led to the development of novel tools for diagnosis and treatment. Artificial neural networks can provide valuable support for both basic research and clinical decision-making. Therefore, tight cooperation among surgeons, oncologists, and biostatisticians appears mandatory.
Reference26 articles.
1. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries;Bray;CA Cancer J. Clin.,2018
2. Howlader, N., Krapcho, M., Miller, D., Bishop, K., Kosary, C.L., Yu, M., Ruhl, J., Tatalovich, Z., Mariotto, A., and Lewis, D.R. (2017). SEER Cancer Statistics Review, 1975–2014, Based on November 2016 SEER Data Submission, Posted to the SEER Web Site, National Cancer Institute.
3. (2022, June 14). Cancer Research UK. Available online: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/lung-cancer/survival.
4. Lung cancer screening, version 3.2018, NCCN clinical practice guidelines in oncology;Wood;J. Natl. Compr. Canc. Netw.,2018
5. An overview of the use of artificial neural networks in lung cancer research;Bertolaccini;J. Thorac. Dis.,2017