Abstract
Driving fatigue is the main cause of traffic accidents, which seriously affects people’s life and property safety. Many researchers have applied electroencephalogram (EEG) signals for driving fatigue detection to reduce negative effects. The main challenges are the practicality and accuracy of the EEG-based driving fatigue detection method when it is applied on the real road. In our previous study, we attempted to improve the practicality of fatigue detection based on the proposed non-hair-bearing (NHB) montage with fewer EEG channels, but the recognition accuracy was only 76.47% with the random forest (RF) model. In order to improve the accuracy with NHB montage, this study proposed an improved transformer architecture for one-dimensional feature vector classification based on introducing the Gated Linear Unit (GLU) in the Attention sub-block and Feed-Forward Networks (FFN) sub-block of a transformer, called GLU-Oneformer. Moreover, we constructed an NHB-EEG-based feature set, including the same EEG features (power ratio, approximate entropy, and mutual information (MI)) in our previous study, and the lateralization features of the power ratio and approximate entropy based on the strategy of brain lateralization. The results indicated that our GLU-Oneformer method significantly improved the recognition performance and achieved an accuracy of 86.97%. Our framework demonstrated that the combination of the NHB montage and the proposed GLU-Oneformer model could well support driving fatigue detection.
Funder
National Natural Science Foundation of China
Zhejiang Provincial Natural Science Foundation of China
Key Project of Natural Science Foundation of Zhejiang Province
Key Research and Development Program of Zhejiang Province
Subject
General Physics and Astronomy
Reference76 articles.
1. Mental fatigue impairs physical performance in humans;J. Appl. Physiol.,2009
2. Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness;Neurosci. Biobehav. Rev.,2014
3. Han, C., Sun, X., Yang, Y., Che, Y., and Qin, Y. (2019). Brain complex network characteristic analysis of fatigue during simulated driving based on electroencephalogram signals. Entropy, 21.
4. Singh, S. (2015). Critical Reasons for Crashes Investigated in the National Motor Vehicle Crash Causation Survey, National Center for Statistics and Analysis.
5. Asleep at the wheel-the road to addressing drowsy driving;Sleep,2017
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献