CO2 Viscosification for Mobility Alteration in Improved Oil Recovery and CO2 Sequestration

Author:

Zidane Ali1

Affiliation:

1. Now with LRST at the National Energy Technology Laboratory, Morgantown, WV 26505, USA

Abstract

Recently there have been significant advances in the viscosification of CO2 using a low concentration of oligomers. The new engineered molecules do not adsorb onto rock. This paper studies the effects of different CO2-enhanced viscosity levels in subsurface aquifers and reservoirs. The study was conducted using numerical modeling and simulation tools in homogeneous, heterogenous, fractured, and unfractured media. The viscosity enhancement of CO2 varied from 2- to 20-fold. The simulations included homogeneous, layered, and fractured domains in 2D and in 3D for improved oil recovery. The results showed that in unfractured, homogenous, and layered media, a 10-fold viscosity increase leads to significant increases in oil recovery. In a fractured medium with a highly connected fracture network, a 20-fold viscosity enhancement may have a considerable effect in delaying breakthrough and improving oil recovery. Simulations were performed in a compositional three-phase flow based on higher-order discretization. The algorithm included Fickian diffusion, which may add to oil recovery performance when there is a sufficient surface area between the CO2-rich phase and the oil phase. In CO2 sequestration, an increase in the viscosity of CO2 and consequent mobility control promotes CO2 dissolution in the aqueous phase. Due to the increase in the density of the aqueous phase from CO2 dissolution, the CO2 is carried away from the cap rock to the bottom of the formation. This work is of particular importance in improved oil recovery and in safe CO2 sequestration due to solubility trapping and mitigation of pressure increase. The higher-order numerical scheme used in this simulation guarantees a level of accuracy not obtained in traditional simulators.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3