Joint Power Control and Resource Allocation with Rate Fairness Consideration for SWIPT-Based Cognitive Two-Way Relay Networks

Author:

Peng Chunling1,Wang Guozhong23,Liu Huaping4ORCID

Affiliation:

1. School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing 400054, China

2. School of Communication Engineering, Chongqing College of Electronic Engineering, Chongqing 401331, China

3. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

4. School of Electrical and Electronic Engineering, Oregon State University, Corvallis, OR 97331, USA

Abstract

This paper investigates the power control and resource allocation problem in a simultaneously wireless information and power transfer (SWIPT)-based cognitive two-way relay network, in which two secondary users exchange information through a power splitting (PS) energy harvesting (EH) cognitive relay node underlay in a primary network. To enhance the secondary networks’s transmission ability without detriment to the primary network, we formulate an optimization to maximize the minimum transmission rates of the cognitive users by jointly optimizing power allocation at the sources, the time allocation of transmission frames and power splitting at the relay, under the constraint that the transmission power of the cognitive network is set not to exceed the primary user interference threshold to ensure primary work performance. To efficiently solve this problem, a sub-optimal algorithm named the joint power control and resource allocation (JPCRA) scheme is proposed, in which we decouple the non-convex problem into convex problems and use alternative steps in the optimization algorithm to get final solutions. Numerical results reveal that the proposed scheme enhances transmission fairness and outperforms three traditional schemes.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3