Effective Size Reduction of the Metallic Waveguide Bandpass Filter with Metamaterial Resonators and Its 3D-Printed Version

Author:

Cho Junghyun,Seo Yejune,Cho Jihaeng,Park Kyoung Youl,Park Joongki,Lee Hosub,Kahng Sungtek

Abstract

In this paper, a novel method is proposed to effectively reduce the size of a waveguide bandpass filter (BPF). Because the metallic cavities make the conventional waveguide end up with a large geometry, especially for high-order BPFs, very compact waveguide-type resonators having metamaterial zeroth-order resonance (WG ZOR) are designed on the cross section of the waveguide and substituted for the cavities. While the cavities are half-wavelength resonators, the WG ZOR is shorter than one-eighth of a wavelength. A substantial reduction in the size and weight of the waveguide filter is observed as the resonators are cascaded in series through coupling elements in the X-band that is much longer than that in K- or Ka-bands. The proposed metamaterial filter is realized as a 3D-printed structure to be lighter and thus more suitable for low earth orbit (LEO) satellites. An X-band of 7.25–7.75 GHz is chosen to verify the method as the passband with an attenuation of 40 dB at 7.00 GHz and 8.00 GHz as the roll-off in the stopband. The BPF is manufactured in two ways, namely the CNC-milling technique and metal coating–added 3D printing. The design is carried out with a geometrical parameter of not 10−2 mm but rather 10-1 mm, which is good for manufacturers but challenging for component designers. The measurement of the manufactured metal waveguide filters reveals that the passband has about ≤1 dB and ≤−15 dB as the insertion loss and the reflection coefficient, respectively, and the stopband has an attenuation of ≤−40 dB, which are in good agreement with the results of the circuit and the simulation. The proposed filter has a length of 14 cm as the eighth-order BPF, but the conventional waveguide is 20 cm as the seventh-order BPF for the same area of the cross section.

Funder

Agency for Defense Development

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference19 articles.

1. (2022, November 18). Forecasting Future NASA Demand in Low Earth Orbit: Revision Two—Quantifying Demand. National Aeronautics and Sapce Administration Home page, Available online: https://www.nasa.gov/leo-economy/commercial-low-earth-orbit-helpful-links.

2. Low Earth Orbit Satellites to Enable Access Equality;Kurt;IEEE Commun. Mag.,2022

3. The simulation, design and implementation of bandpass filters in rectangular waveguides;Choocadee;Electr. Electron. Eng.,2012

4. Design Procedure for Bandpass Filters Based on Integrated Coaxial and Rectangular Waveguide Resonators;Guglielmi;IEEE Trans. Microw. Theory Tech.,2020

5. Compact Wideband Hybrid Filters in Rectangular Waveguide with Enhanced Out-of-Band Response;Valencia;IEEE Trans. Microw. Theory Tech.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3