Towards an International Levee Performance Database (ILPD) and Its Use for Macro-Scale Analysis of Levee Breaches and Failures

Author:

Özer Işil EceORCID,van Damme MyronORCID,Jonkman Sebastiaan N.

Abstract

Understanding levee failures can be significantly improved by analysing historical failures, experiments and performance observations. Individual efforts have been undertaken to document flood defence failures but no systematically gathered large scale, open access dataset is currently available for thorough scientific research. Here, we introduce an efficiently structured, global database, called International Levee Performance Database (ILPD), which aims to become a valuable knowledge platform in the field of levee safety. It comprises information on levee characteristics, failure mechanisms, geotechnical investigations and breach processes for more than 1500 cases (October 2019). We provide a macro-scale analysis of the available data, aiming to provide insights on levee behaviour based on historical records. We outline common failure mechanisms of which external erosion is identified as the most frequent for levees. As an example, we investigate flood events occurred in Germany (2002, 2013) and examine breach characteristics of hundreds of failures. It is found that initial failure mechanisms have an influence on breach characteristics and that failures due to instability and internal erosion are less frequent but lead to larger breaches. Moreover, a relation between the return period and the expected breach density during a flood event is identified. These insights could complement flood risk assessments.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference62 articles.

1. European Past Floodshttps://www.eea.europa.eu/data-and-maps/data/european-past-floods/

2. Applicability of satellite radar imaging to monitor the conditions of levees

3. Updating piping reliability with field performance observations

4. National Performance of Dams Programhttp://npdp.stanford.edu/data_library

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3