Detecting Image Forgery over Social Media Using U-NET with Grasshopper Optimization

Author:

Ghannad Niousha1,Passi Kalpdrum1ORCID

Affiliation:

1. School of Engineering and Computer Science, Laurentian University, Sudbury, ON P3E 2C6, Canada

Abstract

Currently, video and digital images possess extensive utility, ranging from recreational and social media purposes to verification, military operations, legal proceedings, and penalization. The enhancement mechanisms of this medium have undergone significant advancements, rendering them more accessible and widely available to a larger population. Consequently, this has facilitated the ease with which counterfeiters can manipulate images. Convolutional neural network (CNN)-based feature extraction and detection techniques were used to carry out this task, which aims to identify the variations in image features between modified and non-manipulated areas. However, the effectiveness of the existing detection methods could be more efficient. The contributions of this paper include the introduction of a segmentation method to identify the forgery region in images with the U-Net model’s improved structure. The suggested model connects the encoder and decoder pipeline by improving the convolution module and increasing the set of weights in the U-Net contraction and expansion path. In addition, the parameters of the U-Net network are optimized by using the grasshopper optimization algorithm (GOA). Experiments were carried out on the publicly accessible image tempering detection evaluation dataset from the Chinese Academy of Sciences Institute of Automation (CASIA) to assess the efficacy of the suggested strategy. The results show that the U-Net modifications significantly improve the overall segmentation results compared to other models. The effectiveness of this method was evaluated on CASIA, and the quantitative results obtained based on accuracy, precision, recall, and the F1 score demonstrate the superiority of the U-Net modifications over other models.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3