Estimation for Runway Friction Coefficient Based on Multi-Sensor Information Fusion and Model Correlation

Author:

Niu Yadong,Zhang Sixiang,Tian Guangjun,Zhu HuaboORCID,Zhou Wei

Abstract

Friction is a crucial factor affecting air accident occurrence on landing or taking off. Tire–runway friction directly contributes to aircraft stability on land. Therefore, an accurate friction estimation is a rising issue for all stakeholders. This paper summarizes the existing measurement methods, and a multi-sensor information fusion scheme is proposed to estimate the friction coefficient between the tire and the runway. Acoustic sensors, optical sensors, tread sensors, and other physical sensors form a sensor system that is used to measure friction-related parameters and fuse them through a neural network. So far, many attempts have been made to link the ground friction coefficient with the aircraft braking friction coefficient. The models that have been developed include the International Runway Friction Index (IRFI), Canada Runway Friction Index (CRFI), and other fitting models. Additionally, this paper attempts to correlate the output of the neural network (estimated friction coefficient) with the correlation model to predict the friction coefficient between the tire and the runway when the aircraft brakes. The sensor system proposed in this paper can be regarded as a mobile weather–runway–tire system, which can estimate the friction coefficient by integrating the runway surface conditions and the tire conditions, and fully consider their common effects. The role of the correlation model is to convert the ground friction coefficient to the grade of the aircraft braking friction coefficient and the information is finally reported to the pilots so that they can make better decisions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3