Energy and Economic Analysis of Date Palm Biomass Feedstock for Biofuel Production in UAE: Pyrolysis, Gasification and Fermentation

Author:

Martis Remston,Al-Othman AmaniORCID,Tawalbeh MuhammadORCID,Alkasrawi MalekORCID

Abstract

This work evaluates date palm waste as a cheap and available biomass feedstock in UAE for the production of biofuels. The thermochemical and biochemical routes including pyrolysis, gasification, and fermentation were investigated. Simulations were done to produce biofuels from biomass via Aspen Plus v.10. The simulation results showed that for a tonne of biomass feed, gasification produced 56 kg of hydrogen and fermentation yielded 233 kg of ethanol. Process energy requirements, however, proved to offset the bioethanol product value. For 1 tonne of biomass feed, the net duty for pyrolysis was 37 kJ, for gasification was 725 kJ, and for fermentation was 7481.5 kJ. Furthermore, for 1 tonne of date palm waste feed, pyrolysis generated a returned USD $768, gasification generated USD 166, but fermentation required an expenditure of USD 763, rendering it unfeasible. The fermentation economic analysis showed that reducing the system’s net duty to 6500 kJ/tonne biomass and converting 30% hemicellulose along with the cellulose content will result in a breakeven bioethanol fuel price of 1.85 USD/L. This fuel price falls within the acceptable 0.8–2.4 USD/L commercial feasibility range and is competitive with bioethanol produced in other processes. The economic analysis indicated that pyrolysis and gasification are economically more feasible than fermentation. To maximize profits, the wasted hemicellulose and lignin from fermentation are proposed to be used in thermochemical processes for further fuel production.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3