Fast Approach for SAR Imaging of Ground-Based Moving Targets Based on Range Azimuth Joint Processing

Author:

Shu Yuxiang,Wan Jun,Li Dong,Chen ZhanyeORCID,Liu Hongqing

Abstract

The synthetic aperture radar (SAR) images of a moving target may be out of focus, given the motions of a non-cooperative target. Doppler ambiguities, including the Doppler center blur and spectrum ambiguity, will easily appear due to the limitations of pulse repetition frequency, which causes difficulty in moving-target imaging. Therefore, a robust fast Doppler ambiguity approach for SAR imaging of a ground-based moving target using range azimuth joint processing (RAJP) is presented. Firstly, the use of RAJP, based on a two-dimensional cross-correlation function and linear range cell migration (LRCM) compensation function, is proposed to simultaneously obtain the first- and second-order phase parameters in the fast-time and azimuth-frequency domains. Then, a corresponding azimuth reference function is constructed to image the moving target. Additionally, a principal component analysis-based operation is introduced to solve the mismatch with the LRCM compensation function. The couplings between the range and azimuth and between the first- and second-order parameters can be simultaneously decoupled by the proposed RAJP operation, which simplifies the processing steps. The developed approach can simultaneously obtain the first- and second-order parameters in the fast-time and azimuth-frequency domains, which avoids the propagation error of parameter estimation caused by the stepwise processing operation. The proposed method is relatively fast, given the need for fewer processing steps. The presented approach is robust in terms of Doppler ambiguity and handles the blind speed sidelobe well. In this study, simulated and real data are processed to verify the proposed approach.

Funder

the Engineering Research Center of Mobile Communications, Ministry of Education

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference42 articles.

1. Digital Processing of Synthetic Aperture Radar Data: Algorithm and Implementation;Cumming,2005

2. A tutorial on synthetic aperture radar

3. Plug-and-Play Synthetic Aperture Radar Image Formation Using Deep Priors

4. Signal modeling and analysis for elevation frequency scanning HRWS SAR;Liu;IEEE Trans. Geosci. Remote Sens.,2020

5. OSRanP: A novel way for radar imaging utilizing joint sparsity and low-rankness;Pu;IEEE Trans. Comput. Imag.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3