Multiscale Object-Based Classification and Feature Extraction along Arctic Coasts

Author:

Clark Andrew,Moorman BrianORCID,Whalen Dustin,Vieira GonçaloORCID

Abstract

Permafrost coasts are experiencing accelerated erosion in response to above average warming in the Arctic resulting in local, regional, and global consequences. However, Arctic coasts are expansive in scale, constituting 30–34% of Earth’s coastline, and represent a particular challenge for wide-scale, high temporal measurement and monitoring. This study addresses the potential strengths and limitations of an object-based approach to integrate with an automated workflow by assessing the accuracy of coastal classifications and subsequent feature extraction of coastal indicator features. We tested three object-based classifications; thresholding, supervised, and a deep learning model using convolutional neural networks, focusing on a Pleaides satellite scene in the Western Canadian Arctic. Multiple spatial resolutions (0.6, 1, 2.5, 5, 10, and 30 m/pixel) and segmentation scales (100, 200, 300, 400, 500, 600, 700, and 800) were tested to understand the wider applicability across imaging platforms. We achieved classification accuracies greater than 85% for the higher image resolution scenarios using all classification methods. Coastal features, waterline and tundra, or vegetation, line, generated from image classifications were found to be within the image uncertainty 60% of the time when compared to reference features. Further, for very high resolution scenarios, segmentation scale did not affect classification accuracy; however, a smaller segmentation scale (i.e., smaller image objects) led to improved feature extraction. Similar results were generated across classification approaches with a slight improvement observed when using deep learning CNN, which we also suggest has wider applicability. Overall, our study provides a promising contribution towards broad scale monitoring of Arctic coastal erosion.

Funder

European Union's Horizon 2020 Research and Innovation Programme - Nunataryuk project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3