Remote-Sensing Monitoring of Postfire Vegetation Dynamics in the Greater Hinggan Mountain Range Based on Long Time-Series Data: Analysis of the Effects of Six Topographic and Climatic Factors

Author:

Chen XuORCID,Chen WeiORCID,Xu Min

Abstract

The frequency of forest fires is increasing under global climate change, and forest fires can cause devastating disturbances to forest systems and varying degrees of recovery of forest ecosystems after a disaster. Due to the different intensity of forest fires and forest systems, and in particular the fact that forest ecological recovery is influenced by many topographical and climatic factors, the process of postfire vegetation recovery is unclear and must be studied in depth. In this study, the Greater Hinggan Mountain Range was taken as the study area. Based on the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat time-series images acquired from 2000 to 2018, this study used the spatiotemporal data fusion method to construct reflectance images of vegetation with a relatively consistent growth period to study the vegetation restoration after forest fires. The vegetation restoration was characterized by disturbance index (DI) values, which eliminated phenological influence. Six types of topography and climatic factors (elevation, aspect, slope; temperature, precipitation, and wind speed) were coupled with DI. Through single-factor analysis of variance and multiple comparison statistical methods, it was found that there was a significant relationship between the six factors and DI, which indicated those factors had a significant impact on the restoration of forest vegetation in burned areas. The results will be useful as a reference for future monitoring and management of forest resources.

Funder

National Natural Science Foundation of China

Open Fund of State Key Laboratory of Remote Sensing Science

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3