Particle Swarm Optimization-Based Variational Mode Decomposition for Ground Penetrating Radar Data Denoising

Author:

Liu SixinORCID,Chen Yuhan,Luo Chaopeng,Jiang Hejun,Li Hong,Li Hongqing,Lu QiORCID

Abstract

Ground Penetrating Radar (GPR) has become a widely used technology in geophysical prospecting. The Variational Mode Decomposition (VMD) method is a fully non-recursive signal decomposition method with noise robustness for GPR data processing. The VMD algorithm determines the central frequency and bandwidth of each Intrinsic Mode Function (IMF) by iteratively searching for the optimal solution of the variational mode and is capable of adaptively and effectively dividing the signal in the frequency domain into the many IMFs. However, the penalty parameter α and the number of IMFs K in VMD processing are determined depending on manual experience, which are important parameters affecting the decomposition results. In this paper, we propose a method to automatically search the parameters α and K optimally by Particle Swarm Optimization (PSO) algorithm. Then the signal-to-noise ratio (SNR) and root-mean-square error (RMSE) are used to judge the best superposition of the IMFs for data reconstruction, and the process is data-driven without human subjective intervention. The proposed method is used to process the field data, and the reconstruction data show that this innovative VMD processing can effectively improve the SNR and highlight the target reflections, even some targets not found in pre-processing are also revealed.

Funder

Science and Technology on Near-Surface Detection Laboratory

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference17 articles.

1. Ground Penetrating Radar: Theory and Applications;Jol,2009

2. Ground Penetrating Radar;Daniels,2004

3. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis

4. A moving target detection method based on Kalman filter and EMD for Through-Wall Radar;Song;Proceedings of the CGS/SEG International Conference,2017

5. GPR random noise reduction using BPD and EMD

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3