Abstract
Ground Penetrating Radar (GPR) has become a widely used technology in geophysical prospecting. The Variational Mode Decomposition (VMD) method is a fully non-recursive signal decomposition method with noise robustness for GPR data processing. The VMD algorithm determines the central frequency and bandwidth of each Intrinsic Mode Function (IMF) by iteratively searching for the optimal solution of the variational mode and is capable of adaptively and effectively dividing the signal in the frequency domain into the many IMFs. However, the penalty parameter α and the number of IMFs K in VMD processing are determined depending on manual experience, which are important parameters affecting the decomposition results. In this paper, we propose a method to automatically search the parameters α and K optimally by Particle Swarm Optimization (PSO) algorithm. Then the signal-to-noise ratio (SNR) and root-mean-square error (RMSE) are used to judge the best superposition of the IMFs for data reconstruction, and the process is data-driven without human subjective intervention. The proposed method is used to process the field data, and the reconstruction data show that this innovative VMD processing can effectively improve the SNR and highlight the target reflections, even some targets not found in pre-processing are also revealed.
Funder
Science and Technology on Near-Surface Detection Laboratory
Subject
General Earth and Planetary Sciences
Reference17 articles.
1. Ground Penetrating Radar: Theory and Applications;Jol,2009
2. Ground Penetrating Radar;Daniels,2004
3. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
4. A moving target detection method based on Kalman filter and EMD for Through-Wall Radar;Song;Proceedings of the CGS/SEG International Conference,2017
5. GPR random noise reduction using BPD and EMD
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献