Abstract
With the rapid development of artificial intelligence and fifth-generation mobile network technologies, automatic instrument reading has become an increasingly important topic for intelligent sensors in smart cities. We propose a full pipeline to automatically read watermeters based on a single image, using deep learning methods to provide new technical support for an intelligent water meter reading. To handle the various challenging environments where watermeters reside, our pipeline disentangled the task into individual subtasks based on the structures of typical watermeters. These subtasks include component localization, orientation alignment, spatial layout guidance reading, and regression-based pointer reading. The devised algorithms for orientation alignment and spatial layout guidance are tailored to improve the robustness of our neural network. We also collect images of watermeters in real scenes and build a dataset for training and evaluation. Experimental results demonstrate the effectiveness of the proposed method even under challenging environments with varying lighting, occlusions, and different orientations. Thanks to the lightweight algorithms adopted in our pipeline, the system can be easily deployed and fully automated.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献