An IoE and Big Multimedia Data Approach for Urban Transport System Resilience Management in Smart Cities

Author:

Bellini Emanuele,Bellini PierfrancescoORCID,Cenni DanieleORCID,Nesi PaoloORCID,Pantaleo GianniORCID,Paoli Irene,Paolucci MichelaORCID

Abstract

Today, the complexity of urban systems combined with existing and emerging threats constrains administrations to consider smart technologies and related huge amounts of data generated as a means to take timely and informed decisions. The smart city needs to be prepared for both expected and unexpected situations, and the possibility to mitigate the effect of the uncertainty behind the causes of disruptions through the analysis of all the possible data generated by the city open new possibility for resilience operationalization. This article aims at introducing a new conceptualization for resilience and presenting an innovative full stack solution to exploit Internet of Everything (IoE) and big multimedia data in smart cities to manage resilience of urban transport systems (UTS), which is one of the most critical infrastructures of the city. The approach is based on a novel data driven approach to resilience engineering and functional resonance analysis method (FRAM), to understand and model an UTS in the context of smart cities and to support evidence driven decision making. The paper proposes an architecture taking into account: (a) different kinds of available data generated in the smart city, (b) big data collection and semantic aggregation and enrichment; (c) data sense-making process composed by analytics of different data sources like social media, communication networks, IoT, user behavior; (d) tools for knowledge driven decisions able to combine different information generated by analytics, experience, and structural information of the city into a comprehensive and evidence driven decision model. The solution has been applied in Florence metropolitan city in the context of RESOLUTE H2020 research project of the European Commission.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Resilience analysis in road traffic systems to rainfall events: Road environment perspective;Transportation Research Part D: Transport and Environment;2024-01

2. Implementing integrated digital twin modelling and representation into the Snap4City platform for smart city solutions;Multimedia Tools and Applications;2023-10-05

3. Mobility and Transport Data for City Digital Twin Modeling and Exploitation;2023 IEEE International Smart Cities Conference (ISC2);2023-09-24

4. Resilience for freight transportation systems to disruptive events: a review of concepts and metrics;Canadian Journal of Civil Engineering;2023-09-19

5. A Review of Resilient Transportation Systems in the Last Five Years;2023 7th International Conference on Transportation Information and Safety (ICTIS);2023-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3