On the Mechanical Properties and Fracture Patterns of Biphenylene-Based Nanotubes: A Reactive Molecular Dynamics Study

Author:

Armando Hudson Rodrigues12ORCID,Giozza Wiliam Ferreira3ORCID,Ribeiro Junior Luiz Antonio12ORCID,Pereira Junior Marcelo Lopes3ORCID

Affiliation:

1. Institute of Physics, University of Brasília, Brasília 70919-970, Brazil

2. Computational Materials Laboratory, University of Brasília, LCCMat, Brasília 70919-970, Brazil

3. Faculty of Technology, Department of Electrical Engineering, University of Brasília, Brasília 70919-970, Brazil

Abstract

Carbon-based materials have garnered significant attention since the groundbreaking synthesis of graphene. The exploration of novel 2D carbon allotropes has led to the discovery of materials with intrinsic properties distinct from graphene. Within this context, the biphenylene network (BPN) was successfully synthesized. In this study, we used molecular dynamics (MD) simulations with the Reactive Force Field (ReaxFF) to delve into the thermomechanical properties and fracture patterns of biphenylene-based nanotubes (BPN-NTs) exhibiting armchair (AC-BPN-NT) and zigzag (ZZ-BPN-NT) chiralities. Throughout the longitudinal deformation process, we observed significant morphological transformations preceding the structural fracture of the system. These transformations unfolded in distinct inelastic phases. In both cases, AC- and ZZ-BPN-NT, stress accumulation in four-membered rings led to the creation of octagonal structures; however, in AC, this occurs in the fracture region, subsequently causing the presence of nanopores. On the other hand, for ZZ-BPN-NT, stress accumulation in the rectangular rings occurred in bonds parallel to the deformation, with elongated octagonal structures. The Young’s modulus of these nanotubes ranged from 746 to 1259 GPa, with a melting point of around 4000 K. Our results also explore the influence of diameter and curvature, drawing comparisons with BPN monolayers.

Funder

Brazilian Research Councils CNPq

CAPES

FAPEPI

FAPDF

FAPESP

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3