Managing Moose from Home: Determining Landscape Carrying Capacity for Alces alces Using Remote Sensing

Author:

Kramer David W.,Prebyl Thomas J.,Nibbelink Nathan P.,Miller Karl V.,Royo Alejandro A.,Frair Jacqueline L.

Abstract

In temperate forests of the northeastern U.S., moose (Alces alces) populations are adapted for mixed-age heterogeneous landscapes that provide abundant herbaceous forage in warm months and coniferous forage during winter. Heterogeneity of forest stands is driven by management activities or natural disturbance, resulting in a multi-age forest at a landscape scale. Here, we present a method to estimate landscape carrying capacity of moose by combining remote sensing classification of forest cover class with literature or field-based estimates of class-specific forage abundance. We used Landsat imagery from 1991 to 2013 for the Allegheny National Forest and 2013–2018 for the Adirondack Park, and associated training polygons, to predict based on NDVI and SWI whether a forested landscape fit into one of three cover classes: mature forest, intermediate timber removal, or overstory timber removal. Our three-classes yielded a mean land cover prediction accuracy of 94.3% (Khat = 0.91) and 86.9% (Khat = 0.76) for ANFR and AP, respectively. In the AP, we applied previously calculated summer crude protein values to our predicted cover types, resulting in an estimated average carrying capacity of 760 moose (SD ± 428) across all sampling years, similar in magnitude to a density estimate of 716 moose (95% CI = 566–906) calculated during the same time. Our approach was able to accurately identify forest timber treatments across landscapes at differing spatial and temporal scales and provide an alternative method to estimate landscape-level ungulate carrying capacity. The ability to accurately identify areas of potential conflict from overbrowsing, or to highlight areas in need of land cover treatments can increase the toolset for ungulate management in managed forest landscapes.

Funder

United States Department of Agriculture

U.S. Fish and Wildlife

Publisher

MDPI AG

Subject

Forestry

Reference65 articles.

1. Relative deer density and sustainability: A conceptual framework for integrating deer management with ecosystem management;De Calesta;Wildl. Soc. Bull.,1997

2. The George Reserve Deer Herd: Population Ecology of a K-Selected Species;McCullough,1979

3. Carrying capacity and related slippery shibboleths;Macnab;Wildl. Soc. Bull.,1985

4. Estimates of Habitat Carrying Capacity Incorporating Explicit Nutritional Constraints

5. Approximation of K carrying capacity for moose in eastern Quebec

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3