Design and Testing of a Novel Unoccupied Aircraft System for the Collection of Forest Canopy Samples

Author:

Krisanski SeanORCID,Taskhiri Mohammad SadeghORCID,Montgomery JamesORCID,Turner Paul

Abstract

Unoccupied Aircraft Systems (UAS) are beginning to replace conventional forest plot mensuration through their use as low-cost and powerful remote sensing tools for monitoring growth, estimating biomass, evaluating carbon stocks and detecting weeds; however, physical samples remain mostly collected through time-consuming, expensive and potentially dangerous conventional techniques. Such conventional techniques include the use of arborists to climb the trees to retrieve samples, shooting branches with firearms from the ground, canopy cranes or the use of pole-mounted saws to access lower branches. UAS hold much potential to improve the safety, efficiency, and reduce the cost of acquiring canopy samples. In this work, we describe and demonstrate four iterations of 3D printed canopy sampling UAS. This work includes detailed explanations of designs and how each iteration informed the design decisions in the subsequent iteration. The fourth iteration of the aircraft was tested for the collection of 30 canopy samples from three tree species: eucalyptus pulchella, eucalyptus globulus and acacia dealbata trees. The collection times ranged from 1 min and 23 s, up to 3 min and 41 s for more distant and challenging to capture samples. A vision for the next iteration of this design is also provided. Future work may explore the integration of advanced remote sensing techniques with UAS-based canopy sampling to progress towards a fully-automated and holistic forest information capture system.

Funder

Forest and Wood Products Australia (FWPA) and the Department of Agriculture, Water, and the Environment

Publisher

MDPI AG

Subject

Forestry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3