Affiliation:
1. School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
2. State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Changsha 410083, China
Abstract
Isothermal deformation experiments of the Hastelloy C276 alloy were executed using the Gleeble-3500 hot simulator at a temperature range of 1000–1150 °C and a strain rate range of 0.01–10 s−1. Microstructural evolution mechanisms were analyzed via transmission electron microscope (TEM) and electron backscatter diffraction (EBSD). Results reveal that the influences of hot compression parameters on the microstructure variation features and flow behaviors of the Hastelloy C276 alloy were significant. The intense strain hardening (SH) effects caused by the accumulation of substructures were promoted when the strain rates were increased, and true stresses exhibited a notable increasing tendency. However, the apparent DRV effects caused by the annihilation of substructures and the increasingly dynamic recrystallization (DRX) behaviors occurred at high compressed temperature, inducing the reduction in true stresses. In addition, a physical-based (PB) constitutive model and a long short-term memory (LSTM) model optimized using the particle swarm optimization (PSO) algorithm were established to predict the flow behavior of Hastelloy C276 alloy. The smaller average absolute relative error and greater relation coefficient suggest that the LSTM model possesses a higher forecasting accuracy than the PB model.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Hunan Provincial Natural Science Foundation of China
Changsha Municipal Natural Science Foundation
State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures
Postgraduate Scientific Research Innovation Project of Hunan Province
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献