Effects of Interface Morphology on the Shear Mechanical Properties of Sand–Concrete Interfaces

Author:

Li Huanhuan123,Meng Zhigang1,Shen Songlin34

Affiliation:

1. School of Civil Engineering and Architecture, NingboTech University, 1 Qianhu South Road, Ningbo 315100, China

2. Institute of Geotechnical Engineering, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou 310058, China

3. Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University, 1 Xijing Road, Xi’an 710123, China

4. China MCC22 Group Corporation Ltd., 16 Xingfu Road, Tangshan 063000, China

Abstract

The morphology of the contact surface between cast-in-place engineering structures and soil is generally random. Previous research focusing on the shear mechanical properties of soil–concrete interfaces has predominantly concentrated on the role of interface roughness by constructing regular concrete surface types, largely neglecting the potential impact of the roughness morphology (i.e., the morphology of the concrete surface). In this study, concrete blocks with the same interface roughness and different roughness morphologies were constructed based on the sand-cone method, including random rough surface, triangular groove surface, rectangular groove surface, trapezoid groove surface, and semicircular groove surface. A series of direct shear tests were conducted on the rough and smooth sand–concrete interfaces, as well as on natural sand. Through these tests, we examined the shear mechanical behavior and strength of the sand–concrete interfaces, and analyzed the underlying shear mechanisms. The results showed that: (i) the interface morphology had little effect on the variation in the shear stress–displacement curve of sand–concrete interfaces, and it had a significant influence on the shear strength of the interfaces; (ii) under the same normal stress, the shear strength of the sand–concrete interfaces with a random rough surface was the greatest, followed by the triangular groove surface, while the shear strength of the rectangular groove surface proved the lowest; (iii) the shear strength of the sand–concrete interfaces with the same roughness was affected by the size of the contact area between the concrete plane and the sand, that is, a larger contact area correlated with a decrease in shear strength. It can be concluded that the shear strength value of a sand–concrete surface with the triangular groove is the closest to the shear strength of a random rough interface. By gaining a deep understanding of the effects of different contact surface morphologies on shear strength and shear behavior, significant insights can be provided for optimizing engineering design and enhancing engineering performance.

Funder

the Yongjiang Talent Project

the General Scientific Research Projects of Zhejiang Education Department

the Special Fund for Natural Science Basic Research Program of Shaanxi Province

the Special Fund for Scientific Research by Shaanxi Provincial Education Department

Publisher

MDPI AG

Subject

General Materials Science

Reference26 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3