Effect of Cold Rolling Reduction Rate on the Microstructure and Properties of Q&P Steel with a Ferrite-Pearlite Initial Structure

Author:

Wang Shengwei1,Chen Mengxiao23,Yang Mingyue1,Huang Yuhe14,Wang Shuize14,Mao Xinping14

Affiliation:

1. Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, China

2. Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

3. Research Institute, Baoshan Iron and Steel Co., Ltd., Shanghai 201999, China

4. Institute of Steel Sustainable Technology, Liaoning Academy of Materials, Shenyang 110000, China

Abstract

Quenching and partitioning (Q&P) steel has garnered attention as a promising third-generation automotive steel. While the conventional production (CP) method for Q&P steel involves a significant cumulative cold rolling reduction rate (CRRR) of 60–70%, the thin slab casting and rolling (TSCR) process has emerged as a potential alternative to reduce or eliminate the need for cold rolling, characterized with a streamline production chain, high-energy efficiency, mitigated CO2 emission and economical cost. However, the effect of the CRRR on the microstructure and properties of Q&P steel with an initial ferrite-pearlite microstructure has been overlooked, preventing the extensive application of TSCR in producing Q&P steel. In this work, investigations involving different degrees of CRRRs reveal a direct relationship between increased reduction and decreased yield strength and plasticity. Notably, changes in the microstructure were observed, including reduced size and proportion of martensite blocks, increased ferrite proportion and decreased retained austenite content. The decrease in yield strength was primarily attributed to the increased proportion of the softer ferrite phase, while the reduction in plasticity was primarily linked to the decrease in retained austenite content. This study provides valuable insights for optimizing the TSCR process of Q&P steel, facilitating its wider adoption in the automotive sector.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3