Win–Win Coordination between RES and DR Aggregators for Mitigating Energy Imbalances under Flexibility Uncertainty

Author:

Krasopoulos Christos T.1,Papaioannou Thanasis G.12ORCID,Stamoulis George D.1,Ntavarinos Nikolaos1,Patouni Malamatenia D.3,Simoglou Christos K.4ORCID,Papakonstantinou Athanasios3

Affiliation:

1. Department of Informatics, Athens University of Economics & Business (AUEB), 10434 Athens, Greece

2. Department of Digital Industry Technologies, National and Kapodistrian University of Athens (NKUA), 34400 Psachna, Greece

3. Heron Energy SA, 11526 Athens, Greece

4. Optimus Energy SA, 11526 Athens, Greece

Abstract

The integration of renewable rnergy sources (RESs) into the power grid involves operational challenges due to the inherent RES energy-production variability. Imbalances between actual power generation and scheduled production can lead to grid instability and revenue loss for RES operators and aggregators. To address this risk, in this paper, we introduce a mutually beneficial bilateral trading scheme between a RES and a DR aggregator to internally offset real-time energy imbalances before resorting to the flexibility market. We consider that the DR aggregator manages the energy demand of users, characterized by uncertainty in their participation in DR events and thus the actual provision of flexibility, subject to their offered monetary incentives. Given that the RES aggregator faces penalties according to dual pricing for positive or negative imbalances, we develop an optimization framework to achieve the required flexibility while addressing the trade-off between maximizing the profit of the RES and DR aggregators and appropriately incentivizing the users. By using appropriate parameterization of the solution, the achievable revenue for the imbalance offsetting can be shared between the RES and the DR aggregators while keeping users satisfied. Our analysis highlights the interdependencies of the demand–production energy imbalance on user characteristics and the RES and DR aggregator profits. Based on our results, we show that a win–win outcome (for the RES and DR aggregators and the users) is possible for a wide range of cases, and we provide guidelines so that such bilateral agreements between RES and DR aggregators could emerge in practical settings.

Funder

iFLEX project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3