Closed-Form Expressions for Local Absorbing Boundary Conditions in Electromagnetic Scattering Problems and Their Implementation into Commercial FEM Software

Author:

Ziolkowski Marcin1ORCID,Gratkowski Stanislaw1

Affiliation:

1. Department of Theoretical Electrical Engineering and Applied Computer Science, Faculty of Electrical Engineering, West Pomeranian University of Technology, 70-313 Szczecin, Poland

Abstract

When solving open-region electromagnetic scattering problems using the standard finite element method, the infinite region exterior to the scatterer must be truncated with an artificial outer boundary. In the interior or finite part of the domain, finite elements can be used, but a boundary condition must be introduced at this artificial boundary to obtain a unique finite element solution. One class of boundary conditions designed for this purpose is called absorbing boundary conditions (ABCs). Several ABCs have been reported in the literature. These can be broadly classified into two categories: local and non-local. In this paper, we present new closed-form expressions for Nth-order local ABCs, equivalent to the well-known sequences of the Bayliss, Gunzburger, and Turkel boundary operators. To the best of our knowledge, these expressions have not yet been reported in the literature. Two- and three-dimensional problems are considered in this study. We also discuss the problem of incorporating custom ABCs into commercial finite element method programs, which are usually closed-source software packages. Two 2D electromagnetic scattering and radiation problems with known analytical solutions are analyzed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference26 articles.

1. Numerical solution for super large scale systems;Han;IEEE Access,2013

2. New infinite elements for a finite element analysis of 2D scattering problems;Gratkowski;IEEE Trans. Mag.,1996

3. A general infinite element for terminating finite element meshes in electromagnetic scattering prediction;Charles;IEEE Trans. Mag.,1998

4. On the accuracy of a 3-D infinite element for open boundary electromagnetic field analysis;Gratkowski;Archiv. Elektrotech.,1994

5. Jin, J.M. (2014). The Finite Element Method in Electromagnetics, John Wiley & Sons. [3rd ed.].

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3