From Academia to Industry: Criteria for Upscaling Ionic Liquid-Based Thermo-Electrochemical Cells for Large-Scale Applications

Author:

Tiozzo Arianna12ORCID,Bertinetti Andrea3ORCID,Tommasi Alessio3ORCID,Nicol Giovanna1,Rocca Riccardo1ORCID,Nakamae Sawako4ORCID,Torres Bautista Blanca E.4,Campagna Zignani Sabrina5ORCID,Laux Edith6ORCID,Fantini Sebastien7ORCID,Sgroi Mauro Francesco25ORCID

Affiliation:

1. South Europe—Sustainable Raw Materials, Centro Ricerche FIAT S.C.p.A., Strada Torino 50, 10043 Orbassano, Italy

2. Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy

3. Gemmate Technologies srl, Via Reano 31, 10090 Buttigliera Alta, Italy

4. Service de Physique de L’état Condensé, SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif sur Yvette, France

5. Institute of Advanced Energy Technologies (ITAE), Italian National Research Council (CNR), Via Salita S. Lucia Sopra Contesse 5, 98126 Messina, Italy

6. Haute Ecole Arc Ingénierie (HES-SO), Eplatures-Grise 17, 2300 La Chaux-de-Fonds, Switzerland

7. Solvionic, 11 Chemin des Silos, 31100 Toulouse, France

Abstract

Thermo-electrochemical cells (or thermocells) represent a promising technology to convert waste heat energy into electrical energy, generating power with minimal material consumption and a limited carbon footprint. Recently, the adoption of ionic liquids has pushed both the operational temperature range and the power output of thermocells. This research discusses the design challenges and the key performance limitations that need to be addressed to deploy the thermocells in real-world applications. For this purpose, a unique up-scaled design of a thermocell is proposed, in which the materials are selected according to the techno-economic standpoint. Specifically, the electrolyte is composed of EMI-TFSI ionic liquid supplemented by [Co(ppy)]3+/2+ redox couples characterized by a positive Seebeck coefficient (1.5 mV/K), while the electrodes consist of carbon-based materials characterized by a high surface area. Such electrodes, adopted to increase the rate of the electrode reactions, lead to a thermoelectric performance one order of magnitude greater than the Pt electrode-based counterpart. However, the practical applications of thermocells are still limited by the low power density and low voltage that can be generated.

Funder

European Union’s Horizon 2020 research and innovation program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference36 articles.

1. (2023, August 07). World Energy Investment 2023—Analysis. Available online: https://www.iea.org/reports/world-energy-investment-2023.

2. Waste Heat: The Dominating Root Cause of Current Global Warming;Bian;Environ. Syst. Res.,2020

3. (2023, August 07). Waste Heat: Innovators Turn to an Overlooked Renewable Resource. Available online: https://e360.yale.edu/features/waste-heat-innovators-turn-to-an-overlooked-renewable-resource.

4. A Comprehensive Review of Thermoelectric Generators: Technologies and Common Applications;Jaziri;Energy Rep.,2020

5. A Review of Industrial Waste Heat Recovery System for Power Generation with Organic Rankine Cycle: Recent Challenges and Future Outlook;Loni;J. Clean. Prod.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3