Radiation Force Modeling for a Wave Energy Converter Array

Author:

Husain Salman1ORCID,Parker Gordon G.1ORCID,Forehand David2ORCID,Anderlini Enrico3ORCID

Affiliation:

1. Mechanical Engineering—Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA

2. School of Engineering, The University of Edinburgh, Edinburgh EH8 9YL, UK

3. Department of Mechanical Engineering, University College London, London WC1E 6BT, UK

Abstract

The motivation and focus of this work is to generate passive transfer function matrices that model the radiation forces for an array of WECs. Multivariable control design is often based on linear time-invariant (LTI) systems such as state-space or transfer function matrix models. The intended use is for designing real-time control strategies where knowledge of the model’s poles and zeros is helpful. This work presents a passivity-based approach to estimate radiation force transfer functions that accurately replace the convolution operation in the Cummins equation while preserving the physical properties of the radiation function. A two-stage numerical optimization approach is used, the first stage uses readily available algorithms for fitting a radiation damping transfer function matrix to the system’s radiation frequency response. The second stage enforces additional constraints on the form of the transfer function matrix to increase its passivity index. After introducing the passivity-based algorithm to estimate radiation force transfer functions for a single WEC, the algorithm was extended to a WEC array. The proposed approach ensures a high degree of match with the radiation function without degrading its passivity characteristics. The figures of merit that will be assessed are (i) the accuracy of the LTI systems in approximating the radiation function, as measured by the normalized root mean squared error (NRMSE), and (ii) the stability of the overall system, quantified by the input passivity index, ν, of the radiation force transfer function matrix.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3