The Degradation of Automotive Radar Sensor Signals Caused by Vehicle Vibrations and Other Nonlinear Movements

Author:

Hau Florian,Baumgärtner Florian,Vossiek MartinORCID

Abstract

As the demands on modern radar systems with respect to accuracy, reliability, and availability increase, a detailed assessment of the influence of nonlinear movements has become necessary. In particular, from the point of view of radar, different types of movements, such as any kind of acceleration, braking situation, or vehicle vibration, are essential parts of any traffic scenario. These unavoidable motions, in which the relative velocity changes within one measurement cycle, are called nonlinear movements. These nonlinearities contribute to intermediate frequencies, which are comparable to the extensively described nonlinearities of a frequency ramp. This additional contribution to the intermediate signal has a direct effect on the signal-to-noise ratio and thus on the accuracy and probability of target detection. This paper presents a study of various types of nonlinear motion and a detailed definition of the resulting parameters based on a variety of vehicle-based measurements. An advanced signal model of frequency-modulated continuous wave (FMCW) radar is introduced and verified in addition to a detailed mathematical description of spectral signal behaviour in sinusoidal motions and linear acceleration. The theoretical and experimental results in idealised point targets are transferred to real complex road users. Furthermore, by applying established automotive signal processing steps in the form of an ordered statistical constant false alarm rate (OS CFAR), the consequences of determining the noise level are also shown. In combination with the already introduced signal behaviour, these results enabled general description of the signal-to-noise ratio of nonlinear movements in complex traffic scenarios.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference27 articles.

1. Handbuch Fahrerassistenzsysteme;Winner,2012

2. Making Bertha See Even More: Radar Contribution

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3