TDP-43 Toxicity in Yeast Is Associated with a Reduction in Autophagy, and Deletions of TIP41 and PBP1 Counteract These Effects

Author:

Park Sei-Kyoung,Park Sangeun,Liebman Susan W.

Abstract

When human TDP-43 is overexpressed in yeast it is toxic and forms cytoplasmic aggregates. The mechanism of this toxicity is unknown. Genetic screens for TDP-43 toxicity modifiers in the yeast system previously identified proteins, including PBP1, that enhance TDP-43 toxicity. The determination in yeast that deletion of PBP1 reduces TDP-43 toxicity while overexpression enhances toxicity, led to the discovery that its human homolog, ATXN2, is associated with ALS risk. Thus, the yeast system has relevance to human disease. We now show that deletion of a new yeast gene, tip41Δ, likewise suppresses TDP-43 toxicity. We also found that TDP-43 overexpression and toxicity is associated with reduced autophagy. This is consistent with findings in other systems that increasing autophagy reduces TDP-43 toxicity and is in contrast to a report of enhanced autophagy when TDP-43 was overexpressed in yeast. Interestingly, we found that deletions of PBP1 and TIP41, which reduced TDP-43 toxicity, eliminated TDP-43′s inhibition of autophagy. This suggests that toxicity of TDP-43 expressed in yeast is in part due to its inhibition of autophagy and that deletions of PBP1 and TIP41 may reduce TDP-43 toxicity by preventing TDP-43 from inhibiting autophagy.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3