A Self-Coordinating Controller with Balance-Guiding Ability for Lower-Limb Rehabilitation Exoskeleton Robot

Author:

Qin Li1,Ji Houzhao1,Chen Minghao1,Wang Ke1

Affiliation:

1. School of Electrical Engineering, Yanshan University, Qinhuangdao 066012, China

Abstract

The restricted posture and unrestricted compliance brought by the controller during human–exoskeleton interaction (HEI) can cause patients to lose balance or even fall. In this article, a self-coordinated velocity vector (SCVV) double-layer controller with balance-guiding ability was developed for a lower-limb rehabilitation exoskeleton robot (LLRER). In the outer loop, an adaptive trajectory generator that follows the gait cycle was devised to generate a harmonious hip–knee reference trajectory on the non-time-varying (NTV) phase space. In the inner loop, velocity control was adopted. By searching the minimum L2 norm between the reference phase trajectory and the current configuration, the desired velocity vectors in which encouraged and corrected effects can be self-coordinated according to the L2 norm were obtained. In addition, the controller was simulated using an electromechanical coupling model, and relevant experiments were carried out with a self-developed exoskeleton device. Both simulations and experiments validated the effectiveness of the controller.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3