Author:
Kubo Takayuki,Shibata Yoshihiro
Abstract
In this paper, we consider some two phase problems of compressible and incompressible viscous fluids’ flow without surface tension under the assumption that the initial domain is a uniform Wq2−1/q domain in RN (N≥2). We prove the local in the time unique existence theorem for our problem in the Lp in time and Lq in space framework with 2<p<∞ and N<q<∞ under our assumption. In our proof, we first transform an unknown time-dependent domain into the initial domain by using the Lagrangian transformation. Secondly, we solve the problem by the contraction mapping theorem with the maximal Lp-Lq regularity of the generalized Stokes operator for the compressible and incompressible viscous fluids’ flow with the free boundary condition. The key step of our proof is to prove the existence of an R-bounded solution operator to resolve the corresponding linearized problem. The Weis operator-valued Fourier multiplier theorem with R-boundedness implies the generation of a continuous analytic semigroup and the maximal Lp-Lq regularity theorem.
Funder
Japan Society for the Promotion of Science
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献