Improving Spectral Efficiency in the SCMA Uplink Channel

Author:

Vidal-Beltrán SergioORCID,López-Bonilla José Luis

Abstract

The Third Generation Partnership Project (3GPP) and the International Telecommunication Union (ITU) identified the technical requirements that the fifth generation of mobile communications networks (5G) had to meet; within these parameters are the following: an improved data rate and a greater number of users connected simultaneously. 5G uses non-orthogonal multiple access (NOMA) to increase the number of simultaneously connected users, and by encoding data it is possible to increase the spectral efficiency (SE). In this work, eight codewords are used to transmit three bits simultaneously using Sparse Code Multiple Access (SCMA), and through singular value decomposition (SVD) the Euclidean distance between constellation points is optimized. On the other hand, applications of machine intelligence and machine intelligence in 5G and beyond communication systems are still developing; in this sense, in this work we propose to use machine learning for detecting and decoding the SCMA codewords using neural networks. This paper focuses on the Use Case of enhanced mobile broadband (eMBB), where higher data rates are required, with a large number of users connected and low mobility. The simulation results show that it is possible to transmit three bits simultaneously with a low bit error rate (BER) using SVD-SCMA in the uplink channel. Our simulation results were compared against recent methods that use spatial modulation (SM) and antenna arrays in order to increase spectral efficiency. In adverse Signal-to-Noise Ratio (SNR), our proposal performs better than SM, and antenna arrays are not needed for transmission or reception.

Funder

Instituto Politecnico Nacional

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference28 articles.

1. ITU-R.IMT Vision—Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond, ITU-R M.2083-0https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf

2. 5G Radio Access Network Architecture: Design Guidelines and Key Considerations

3. A Survey of 5G Network: Architecture and Emerging Technologies

4. Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends

5. On the Design of Multiuser Codebooks for Uplink SCMA Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3