Changes in Physical Meat Traits, Protein Solubility, and the Microstructure of Different Beef Muscles during Post-Mortem Aging

Author:

Feng Yong-Hong,Zhang Song-Shan,Sun Bao-Zhong,Xie Peng,Wen Kai-Xin,Xu Chen-ChenORCID

Abstract

This study was performed to compare the differences in pH, myofibril fragmentation index (MFI), total protein solubility (TPS), sarcoplasmic protein solubility (SPS), myofibrillar protein solubility (MPS), and the microstructure of seven beef muscles during aging. From the six beef carcasses of Xinjiang brown cattle, a total of 252 samples from semitendinosus (ST), longissimus thoracis (LT), rhomboideus (RH), gastrocnemius (GN), infraspinatus (IN), psoas major (PM), and biceps femoris (BF) muscles were collected, portioned, and assigned to six aging periods (1, 3, 7, 9, 11, and 14 day/s) and 42 samples were used per storage period. IN muscle showed the highest pH (p < 0.05) from 1 to 14 days and the lowest TPS (p < 0.01) from 9 to 14 days with respect to the other muscles. Moreover, the changes in IN were further supported by transmission electron microscopy due to the destruction of the myofibril structure. The highest value of MFI was tested in ST muscle from 7 to 14 days. The total protein solubility in PM, RH, and GN muscles were not affected (p > 0.05) as the aging period increased. The lowest TPS was found in the RH muscle on day 1, 3, and 7 and in the IN muscle on day 9, 11, and 14. The pH showed negative correlations with the MFI, TPS, and MPS (p < 0.01). The results suggest that changes in protein solubility and muscle fiber structure are related to muscle location in the carcass during aging. These results provide new insights to optimize the processing and storage of different beef muscles and enhance our understanding of the biological characteristics of Xinjiang brown cattle muscles.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health(social science),Microbiology,Food Science

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3