Abstract
The main challenges of sensing in harsh industrial and biological environments are the limited energy of sensor nodes and the difficulty of charging sensor nodes. Simultaneous wireless information and power transfer (SWIPT) is a non-invasive option to replenish energy. SWIPT harvests energy and decodes information from the same RF signal, which is influencing the design of a wireless sensor network. In multi-hop multi-flow wireless sensor networks, interference generally exists, and the interference has a different influence on SWIPT. Route, interference and SWIPT are dependent. However, existing works consider SWIPT link resource allocation with a given route or only select path for one flow without interference. Therefore, this paper firstly analyzes the influence of interference on SWIPT, and select the SWIPT routing with interference. We design an interference-based information and energy allocation model to maximize the link capacity with SWIPT. Then, we design an interference-aware route metric, formulate SWIPT routing problem, and design an interference-aware SWIPT routing algorithm. The simulation results show that as the number of flows increases, there is more likely to obtain performance gains from interference and SWIPT.
Funder
National Natural Science Foundation of China
the open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology (Nanjing University of Posts and Telecommunications), Ministry of Education
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献