Abstract
Automation is an inevitable trend in the development of tunnel shotcrete machinery. Tunnel environmental perception based on 3D LiDAR point cloud has become a research hotspot. Current researches about the detection of tunnel point clouds focus on the completed tunnel with a smooth surface. However, few people have researched the automatic detection method for steel arches installed on a complex rock surface. This paper presents a novel algorithm to extract tunnel steel arches. Firstly, we propose a refined function for calibrating the tunnel axis by minimizing the density variance of the projected point cloud. Secondly, we segment the rock surface from the tunnel point cloud by using the region-growing method with the parameters obtained by analyzing the tunnel section sequence. Finally, a Directed Edge Growing (DEG) method is proposed to detect steel arches on the rock surface in the tunnel. Our experiment in the highway tunnels under construction in Changsha (China) shows that the proposed algorithm can effectively extract the points of the edge of steel arches from 3D LiDAR point cloud of the tunnel without manual assistance. The results demonstrated that the proposed algorithm achieved 92.1% of precision, 89.1% of recall, and 90.6% of the F-score.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献