Abstract
The requirements for fish protection at hydro power plants have led to a significant decrease of the bar spacing at trash racks as well as the need of an inclined or angled design to improve the guidance effect (fish-friendly trash racks). The flexible fish fence (FFF) is a new developed fish protection and guidance system, created by horizontally arranged steel cables instead of bars. The presented study investigated experimentally the head loss coefficient of an angled horizontal trash rack with circular bars (CBTR) and the FFF with identical cross sections in a flume (scale 1:2). Nine configurations of different bar and cable spacing (blockage ratio) and rack angles were studied for CBTR and FFF considering six different stationary flow conditions. The results demonstrate that head loss coefficient is independent from the studied Bar–Reynolds number range and increases with increasing blockage ratio and angle. At an angle of 30 degrees, a direct comparison between the two different rack options was conducted to investigate the effect of cable vibrations. At the lowest blockage ratio, head loss for both options are in similar very low ranges, while the head loss coefficient of the FFF increases significantly compared to the CBTR with an increase of blockage. Further, the results indicate a moderate overestimation with the predicted head loss by common head loss equations developed for inclined vertical trash racks. Thus, an adaption of the design equation is proposed to improve the estimation of head loss on both rack options.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Reference36 articles.
1. THINKING LIKE A FISH: A KEY INGREDIENT FOR DEVELOPMENT OF EFFECTIVE FISH PASSAGE FACILITIES AT RIVER OBSTRUCTIONS
2. The Development of Advanced Hydroelectric Turbines to Improve Fish Passage Survival
3. Developing fish passage and protection at hydropower dams
4. DOWNSTREAM MIGRATION: PROBLEMS AND FACILITIES
5. Fischschutz und Fischabstieg an Wasserkraftanlagen-Handbuch Rechen-und Bypasssysteme. Ingenieurbiologische Grundlagen, Modellierung und Pronose, Bemessung und Gestaltung [Fish Protection and Downstream Passage at Hydro Power Stations-Bioengineering Principles, Modelling and Prediction, Dimensioning and Design];Ebel,2018
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献