A Methodology to Simulate LST Directional Effects Based on Parametric Models and Landscape Properties

Author:

Ermida Sofia,Trigo Isabel,DaCamara Carlos,Pires Ana

Abstract

The correction of directional effects on satellite-retrieved land surface temperature (LST) is of high relevance for a proper interpretation of spatial and temporal features contained in LST fields. This study presents a methodology to correct such directional effects in an operational setting. This methodology relies on parametric models, which are computationally efficient and require few input information, making them particularly appropriate for operational use. The models are calibrated with LST data collocated in time and space from MODIS (Aqua and Terra) and SEVIRI (Meteosat), for an area covering the entire SEVIRI disk and encompassing the full year of 2011. Past studies showed that such models are prone to overfitting, especially when there are discrepancies between the LSTs that are not related to the viewing geometry (e.g., emissivity, atmospheric correction). To reduce such effects, pixels with similar characteristics are first grouped by means of a cluster analysis. The models’ calibration is then performed on each one of the selected clusters. The derived coefficients reflect the expected impact of vegetation and topography on the anisotropy of LST. Furthermore, when tested with independent data, the calibrated models are shown to maintain the capability of representing the angular dependency of the differences between LST derived from polar-orbiter (MODIS) and geostationary (Meteosat, GOES and Himawari) satellites. The methodology presented here is currently being used to estimate the deviation of LST products with respect to what would be obtained for a reference view angle (e.g., nadir), therefore contributing to the harmonization of LST products.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3