Improved Fully Convolutional Network with Conditional Random Fields for Building Extraction

Author:

Shrestha Sanjeevan,Vanneschi Leonardo

Abstract

Building extraction from remotely sensed imagery plays an important role in urban planning, disaster management, navigation, updating geographic databases, and several other geospatial applications. Several published contributions dedicated to the applications of deep convolutional neural networks (DCNN) for building extraction using aerial/satellite imagery exists. However, in all these contributions, high accuracy is always obtained at the price of extremely complex and large network architectures. In this paper, we present an enhanced fully convolutional network (FCN) framework that is designed for building extraction of remotely sensed images by applying conditional random fields (CRFs). The main objective is to propose a methodology selecting a framework that balances high accuracy with low network complexity. A modern activation function, namely, the exponential linear unit (ELU), is applied to improve the performance of the fully convolutional network (FCN), thereby resulting in more accurate building prediction. To further reduce the noise (falsely classified buildings) and to sharpen the boundaries of the buildings, a post-processing conditional random fields (CRFs) is added at the end of the adopted convolutional neural network (CNN) framework. The experiments were conducted on Massachusetts building aerial imagery. The results show that our proposed framework outperformed the fully convolutional network (FCN), which is the existing baseline framework for semantic segmentation, in terms of performance measures such as the F1-score and IoU measure. Additionally, the proposed method outperformed a pre-existing classifier for building extraction using the same dataset in terms of the performance measures and network complexity.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference46 articles.

1. Planet Doubles Sub-1 Meter Imaging Capacity with Successful Launch of 6 Skysats https://www.planet.com/pulse/planet-doubles-sub-1-meter-imaging-capacity-with-successful-launch-of-6-skysats/

2. Open Data for Disaster Recovery https://www.digitalglobe.com/

3. Automatic Object Extraction from Aerial Imagery—A Survey Focusing on Buildings

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3