Quantification of Polychlorinated Biphenyl (PCB) Concentration in San Francisco Bay Using Satellite Imagery

Author:

Hilton Annette,Bausell Jesse,Kudela Raphael

Abstract

The U.S. Environmental Protection Agency banned the use of polychlorinated biphenyls (PCBs) in 1979, due to the high environmental and public health risks with which they are associated. However, PCBs continue to persist in the San Francisco Bay (SFB), often at concentrations deemed unsafe for humans. In situ PCB monitoring within the SFB is extremely limited, due in large part to the high monetary costs associated with sampling. Here we offer a cost effective alternative to in situ PCB monitoring by demonstrating the feasibility of indirectly quantifying PCBs in the SFB via satellite remote sensing using a two-step approach. First, we determined the relationship between in situ PCB concentrations and suspended sediment concentrations (SSC) in the SFB. We then correlated in situ SSC with spatially and temporally consistent Landsat 8 and Sentinel 2A reflectances. We demonstrate strong relationships between SSC and PCBs in all three SFB sub-embayments (R2 > 0.28–0.80, p < 0.01), as well as a robust relationship between SSC and satellite measurements for both Landsat 8 and Sentinel 2A (R2 > 0.72, p < 0.01). These relationships held regardless of the atmospheric correction regime that we applied. The end product of these relationships is an empirical two-step relationship capable of deriving PCBs from satellite imagery. Our approach of estimating PCBs in the SFB by remotely sensing SSC is extremely cost-effective when compared to traditional in situ techniques. Moreover, it can also be utilized to generate PCB concentration maps for the SFB. These maps could one day serve as an important tool for PCB remediation in the SFB, as they can provide valuable insight into the spatial distribution of PCBs throughout the bay, as well as how this distribution changes over time.

Funder

NASA

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3