Detection of Shoot Beetle Stress on Yunnan Pine Forest Using a Coupled LIBERTY2-INFORM Simulation

Author:

Lin Qinan,Huang Huaguo,Yu Linfeng,Wang Jingxu

Abstract

Yunnan pine shoot beetles (PSB), Tomicus yunnanensis and Tomicus minor have spread through southwestern China in the last five years, leading to millions of hectares of forest being damaged. Thus, there is an urgent need to develop an effective approach for accurate early warning and damage assessment of PSB outbreaks. Remote sensing is one of the most efficient methods for this purpose. Despite many studies existing on the mountain pine beetle (MPB), very little work has been undertaken on assessing PSB stress using remote sensing. The objective of this paper was to develop a spectral linear mixing model aided by radiative transfer (RT) and a new Yellow Index (YI) to simulate the reflectance of heterogeneous canopies containing damaged needles and quantitatively inverse their PSB stress. The YI, the fraction of dead needles, is a physically-explicit stress indicator that represents the plot shoots damage ratio (plot SDR). The major steps of this methods include: (1) LIBERTY2 was developed to simulate the reflectance of damaged needles using YI to linearly mix the green needle spectra with the dead needle spectra; (2) LIBERTY2 was coupled with the INFORM model to scale the needle spectra to the canopy scale; and (3) a look-up table (LUT) was created against Sentinel 2 (S2) imagery and inversed leaf chlorophyll content (LCC), green leaf area index (LAI) and plot SDR. The results show that (1) LIBERTY2 effectively simulated the reflectance spectral values on infested needles (mean relative error (MRE) = 1.4–18%), and the YI can indicate the degrees of needles damage; (2) the coupled LIBERTY2-INFORM model is suitable to estimate LAI (R2 = 0.73, RMSE = 0.17 m m−2, NRMSE = 11.41% and the index of agreement (IOA) = 0.92) and LCC (R2 = 0.49, RMSE = 56.24 mg m−2, NRMSE = 25.22% and IOA = 0.72), and is better than the original LIBERTY model (LAI: R2 = 0.38, RMSE = 0.43 m m−2, NRMSE = 28.85% and IOA = 0.68; LCC: R2 = 0.34, RMSE = 76.44 mg m−2, NRMSE = 34.23% and IOA = 0.57); and (3) the inversed YI is positively correlated with the measured plot SDR (R2 = 0.40, RMSE = 0.15). We conclude that the LIBERTY2 model improved the reflectance simulation accuracy of both the needles and canopies, making it suitable for assessing PSB stress. The YI has the potential to assess PSB damage.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3