A Molecular Docking Study Reveals That Short Peptides Induce Conformational Changes in the Structure of Human Tubulin Isotypes αβI, αβII, αβIII and αβIV

Author:

Ebenezer Oluwakemi12,Damoyi Nkululeko1,Shapi Michael1,Wong Gane Ka-Shu23ORCID,Tuszynski Jack A.3456ORCID

Affiliation:

1. Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Umlazi 4031, South Africa

2. Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada

3. Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada

4. Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada

5. Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada

6. Department of Mechanical and Aerospace Engineering, (DIMEAS), Politecnico di Torino, 10129 Turin, Italy

Abstract

Microtubules are cylindrical protein polymers assembled in the cytoplasm of all eukaryotic cells by polymerization of aβ tubulin dimers, which are involved in cell division, migration, signaling, and intracellular traffic. These functions make them essential in the proliferation of cancerous cells and metastases. Tubulin has been the molecular target of many anticancer drugs because of its crucial role in the cell proliferation process. By developing drug resistance, tumor cells severely limit the successful outcomes of cancer chemotherapy. Hence, overcoming drug resistance motivates the design of new anticancer therapeutics. Here, we retrieve short peptides obtained from the data repository of antimicrobial peptides (DRAMP) and report on the computational screening of their predicted tertiary structures for the ability to inhibit tubulin polymerization using multiple combinatorial docking programs, namely PATCHDOCK, FIREDOCK, and ClusPro. The interaction visualizations show that all the best peptides from the docking analysis bind to the interface residues of the tubulin isoforms αβl, αβll, αβlll, and αβlV, respectively. The docking studies were further confirmed by a molecular dynamics simulation, in which the computed root-mean-square deviation (RMSD), and root-mean-square fluctuation (RMSF), verified the stable nature of the peptide–tubulin complexes. Physiochemical toxicity and allergenicity studies were also performed. This present study suggests that these identified anticancer peptide molecules might destabilize the tubulin polymerization process and hence can be suitable candidates for novel drug development. It is concluded that wet-lab experiments are needed to validate these findings.

Funder

NSERC

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3