Radiometric Identification of Signals by Matched Whitening Transform

Author:

Mobasseri Bijan G.ORCID,Lulu AmroORCID

Abstract

Radiometric identification is the problem of attributing a signal to a specific source. In this work, a radiometric identification algorithm is developed using the whitening transformation. The approach stands out from the more established methods in that it works directly on the raw IQ data and hence is featureless. As such, the commonly used dimensionality reduction algorithms do not apply. The premise of the idea is that a data set is “most white” when projected on its own whitening matrix than on any other. In practice, transformed data are never strictly white since the training and the test data differ. The Förstner-Moonen measure that quantifies the similarity of covariance matrices is used to establish the degree of whiteness. The whitening transform that produces a data set with the minimum Förstner-Moonen distance to a white noise process is the source signal. The source is determined by the output of the mode function operated on the Majority Vote Classifier decisions. Using the Förstner-Moonen measure presents a different perspective compared to maximum likelihood and Euclidean distance metrics. The whitening transform is also contrasted with the more recent deep learning approaches that are still dependent on feature vectors with large dimensions and lengthy training phases. It is shown that the proposed method is simpler to implement, requires no features vectors, needs minimal training and because of its non-iterative structure is faster than existing approaches.

Funder

RT Logic

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3