The Validity and Reliability of Two Commercially Available Load Sensors for Clinical Strength Assessment

Author:

Merry KohleORCID,Napier ChristopherORCID,Chung Vivian,Hannigan Brett C.ORCID,MacPherson Megan,Menon CarloORCID,Scott Alex

Abstract

Objective: Handheld dynamometers are common tools for assessing/monitoring muscular strength and endurance. Health/fitness Bluetooth load sensors may provide a cost-effective alternative; however, research is needed to evaluate the validity and reliability of such devices. This study assessed the validity and reliability of two commercially available Bluetooth load sensors (Activ5 by Activbody and Progressor by Tindeq). Methods: Four tests were conducted on each device: stepped loading, stress relaxation, simulated exercise, and hysteresis. Each test type was repeated three times using the Instron ElectroPuls mechanical testing device (a gold-standard system). Test–retest reliability was assessed through intraclass correlations. Agreement with the gold standard was assessed with Pearson’s correlation, interclass correlation, and Lin’s concordance correlation. Results: The Activ5 and Progressor had excellent test–retest reliability across all four tests (ICC(3,1) ≥ 0.999, all p ≤ 0.001). Agreement with the gold standard was excellent for both the Activ5 (ρ ≥ 0.998, ICC(3,1) ≥ 0.971, ρc ≥ 0.971, all p’s ≤ 0.001) and Progressor (ρ ≥ 0.999, ICC(3,1) ≥ 0.999, ρc ≥ 0.999, all p’s ≤ 0.001). Measurement error increased for both devices as applied load increased. Conclusion: Excellent test–retest reliability was found, suggesting that both devices can be used in a clinical setting to measure patient progress over time; however, the Activ5 consistently had poorer agreement with the gold standard (particularly at higher loads).

Funder

Workers Compensation Board of British Columbia

Michael Smith Foundation for Health Research

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3