Vector Speed Regulation of an Asynchronous Motor Based on Improved First-Order Linear Active Disturbance Rejection Technology

Author:

Zhou Xuesong,Wang Chenglong,Ma Youjie

Abstract

Asynchronous motors are widely used in industry and agriculture because of their simple structure, low cost, and easy maintenance. However, due to the coupling and uncertain factors of the actual operation of the motor, a traditional controller cannot achieve a satisfactory control effect. A linear active disturbance rejection controller (LADRC), featuring good robustness and adaptability, was proposed to improve the control efficiency of a nonlinear, uncertain plant. A linear extended state observer (LESO) is the core part of a L. The accuracy of the observation of state variables and unknown disturbances is related to the control effect of the controller. The performance of a traditional LESO is not high enough, and thus an error differential is introduced by analyzing the principle of LESO to improve its observation performance. The improved LADRC applies to the vector speed control of the induction motor. Additionally, low-speed and high-speed no-load starting, sudden load, electromagnetic torque, and three-phase stator current of the induction motor was simulated using MATLAB (Developed by MathWorks in Natick, MA, USA, and dealt by MathWorks Software (Beijing) Co., Ltd. in Beijing, China). Theoretical analysis and simulation results show that the ADRC based on the improved linear expansion observer was better than the traditional linear ADRC in terms of the dynamic and static performance and robustness.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference26 articles.

1. Stable and Robust Controller for Induction Motor Drive;Fedor,2018

2. Optimization techniques to enhance the performance of induction motor drives: A review

3. Backstepping Development as Controller in Fast Response Three Phase Induction Motor Based on Indirect Field Oriented Control;Happyanto,2016

4. Real time implementation of backstepping-multiscalar control to induction motor fed by voltage source inverter

5. A New Robust Algorithm to Improve the Dynamic Performance on the Speed Control of Induction Motor Drive

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3