Abstract
Plug-in electric buses (PEBs) are a promising alternative to conventional buses to provide a sustainable, economical, and efficient mode of transportation. However, electrification of public transportation leads to a phenomenon of peak load that impacts the stability of low voltage (LV) feeders. In this context, the effective integration of an energy storage system (ESS) and photovoltaic (PV) in a bus depot charging ecosystem can lead to i) peak load reduction and ii) charging cost reduction with low carbon emission. Therefore, a limited PEB charge scheduling algorithm is proposed for: i) bus depot operator (BDO) profit maximization and ii) grid stability enhancement considering the constraints of PEB charging and grids. A mixed integer linear programming (MILP) model for BDO profit maximization has been formulated and analyzed using IBM ILOG studio with CPLEX solver. Simulation has been performed for SkyBus electric fleet using real-world data such as actual bus arrival and departure schedules under diverse traffic, number of passengers, trip duration, daily load profile, solar radiation profile, and benchmark storage price. The charging impact of PEBs was tested on one of the distribution feeders in Auckland, New Zealand. The BDO generates revenue by performing energy trading among PV, ESS, PEBs, and buildings after incorporating capital investment, operation and maintenance, and depreciation costs.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献