Author:
Nhut Le Minh,Park Youn Cheol
Abstract
In this study, based on the optimal equation m = 0.05 Δ T A c (kg/min) of the variable mass flow rate in the collector loop, an automatic controller with an inverter collector pump for the collector loop of the solar-assisted heating system is designed for these experiments and to then be used for real industry. The pump for the collector loop is an inverter type that is controlled by an embedded controller with Windows, based on C# language, and the change of speed depends on the variation of the mass flow rate through the collector loop. The input of the automatic controller with an inverter collector pump is given by a thermocouple input module that is connected to the embedded controller with the RS-485 communication protocol. In this work, the experiments were carried out on three different days, namely a clear day, an intermittently cloudy day and an overcast day, to evaluate the stability and the precision of the automatic controller, as well as the contribution of the useful heat gain from the collector for the solar-assisted heating system. Simulation and experimental results are also validated and analyzed.
Funder
National Research Foundation of Korea
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)