Cooling Effect on the Floating Solar PV: Performance and Economic Analysis on the Case of West Java Province in Indonesia

Author:

Sukarso Adimas Pradityo,Kim Kyung NamORCID

Abstract

Solar photovoltaic technology is one of the most well established new and renewable energy technologies. Many researchers have undertaken wide research and development in this sector, including material and system design. To protect the exhaustion of global terrestrial land and to avoid the occupation of extensive farmlands, solar photovoltaic (PV) developers, as well as policymakers, have pursued various solutions, including the development of floating solar PV (FPV). This study consists of a technological and economic perspective to analyze the floating solar PV system. The authors utilize remote sensing results to predict FPV efficiency and measure energy yield from the system while also developing an economics analysis on an FPV project by comparison with ground-based solar PV (GPV). The results from the remote sensing method found that the lake has a cooler temperature than the ground, with an annual difference of around 8 °C. FPV efficiency was also shown to be around 0.61% higher than GPV in terms of the prediction. FPV economic parameter comparison also resulted in 3.37 cents/kWh lower levelized cost of electricity (LCOE), and 6.08% higher internal rate of return (IRR) compared to GPV in the base scenario.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference47 articles.

1. Energy Technology Perspectives 2017, IEA, Parishttps://www.iea.org/reports/energy-technology-perspectives-2017

2. Accelerating Sustainable Energy Innovation,2018

3. Renewable Energy Network For 21st Renewables 2018 Global Status Report,2018

4. Renewable Energy Benefits: Leveraging Local Capacity For Solar PV,2017

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3